Decision-Aiding and Alerting System Development for Distributed Air/Ground Traffic Management

James K. Kuchar

Department of Aeronautics and Astronautics

Massachusetts Institute of Technology

DAG-TM Workshop May 22-25, 2000

Principal Research Focus

- Fundamental systems-level issues in decision-making with uncertainty
 - Sensors, processing, displays, human factors, procedures
- Projects related to DAG-TM
 - Formal understanding of alerting decision-making
 - Conflict detection and resolution modeling methods
 - Alerting algorithm development
 - Harmonization of multiple decision-making systems
 - Hard / soft hazard modeling

Conflict Detection and Resolution Framework

Survey of Conflict Detection & Resolution Methods

- Many groups involved in CD&R; many solution approaches
- 62 models categorized
 - Operational systems (e.g., TCAS, CTAS, URET)
 - Theoretical & prototype models
- Each model examined from viewpoint of CD&R framework
 - Catalogued models, assumptions, metrics, capabilities
- Examined overall system design methods
 - New "Direct Approach" proposed for development
 - Base automated decisions directly on performance metrics

Example Model Categorization

Model	Dimensions	Detection	Resolution	Maneuvers	Multiple
Andrews [32]	Н	_	О	T	P
Chakravarthy [19]	Н	_	O	C(ST)	P
Tomlin [33]	Н	_	O	T	G
Irvine [34]	HV	_	O	C(STV)	P
Ota [35]	HV	_	O	C(TV)	G
Kosecka [36]	Н	_	F	C(ST)	G
Zeghal [4]	Н	_	F	C(ST)	G
Eby [37,38]	HV	_	F	C(STV)	G
Sridhar [39]	Н		_	_	P
EGPWS [12]	HV		_	_	_
Havel [40]	HV		_	_	P
Kelly [3]	HV		_	_	P
TCAD [15]	HV				P
GPWS [11]	V		P	V	
PRM [13]	Н		P	C(TV)	P
Bilimoria [41]	HV		P	STV	P
Burgess [42]	Н		O	TV	P

Trajectory Modeling Methods

Current Design Method

Mapping Alert Criteria to Performance Metrics

Proposed Direct Approach

Prototype direct-approach CD&R system implemented on NASA Ames 747-400 simulator

Harmonization of Multiple Decision-Making Systems

- Introduction of independent systems monitoring same situation
 - GPWS → EGPWS
 - TCAS → strategic conflict probes, parallel approach alerting
 - Mixed equipage
- Potential for conflicts between decision support systems
 - Static: system A indicates different threat level than B
 - Dynamic: system A upgrades threat while B downgrades
- Mitigation
 - Prioritization / inhibition
 - Constraints on operation / procedures
 - Modification of system logic

Multiple Alerting System Conflicts

- Developing formal methods for system analysis
- Identification of conflicts and methods to mitigate
- Drivers / implications for human interaction

Hard / Soft Hazard Modeling (I)

- Strategic decision support needs to consider:
 - "hard" hazards (terrain, traffic)
 - "soft" hazards (weather)
 - hard & soft constraints (fuel, time, aircraft performance)
- Traffic conflict prediction
 - Likelihood of hard hazard encounter in future
 - hazard appears to be softer as uncertainty increases
- Weather can be modeled similarly
 - Potential to integrate traffic & weather
 - Improve decision acceptability in regions of severe weather

Hard / Soft Hazard Modeling (II)

- Developing model of pilot acceptance of weather risk
 - Potential use in providing feedback on route acceptability
 - Intelligent pilot model for large-scale traffic simulation
- Preliminary results suggest weather can be adequately modeled as an exposure-time dependent soft hazard
- Mathematical methods for integrating weather & traffic threat have been developed
- Extension to other hazards and constraints (time, fuel)

Key Considerations for the Future

- Interplay of uncertainty and decision-making
 - Balance is critical to acceptance of automated aids
- Development of formalisms behind system design
 - Consistent basis
 - Efficient and effective approaches
- Ability to integrate multiple hazard types, constraints, & players
 - Provide seamless, consistent decision support

